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The numerical methods of Rusanov, Godunov, Richtmeyer and MacCormack are 
used to integrate the 1 - D equations of inviscid fluid flow for shock waves, contact 
surfaces and rarefaction waves. The results from each scheme are compared with the 
exact solutions to establish the accuracy. The results demonstrate that the method of 
Godunov and the third-order scheme of Rusanov have the optimum overall perform- 
ance. For viscous flows the inviscid schemes of Rusanov were combined with explicit, 
implicit and Dufort-Frankel differencing of the viscous terms to integrate Burgers 
equation. The numerical results are compared with the exact solution and the error 
is tabulated. 

1. INTRODUCTION 

In recent years selection of a numerical method for solving the equations of 
viscous or inviscid fluid flow has become a difficult task due to the large number of 
finite difference schemes which are available. This task is often complicated by the 
fact that a scheme has been successfully applied to a problem without numerical 
difficulty, but the accuracy is not clearly established. As a result one cannot be sure 
of a method when applying it to another problem. Due to these uncertainties, the 
authors undertook a study of existing finite difference methods for solving fluid 
flow problems, with the intent of establishing optimum methods for computing 
inviscid and viscous flows. The study was limited to unsteady methods for cal- 
culation of steady-state flows. In the investigation the unsteady portion of the 
calculation is included to stabilize the difference method, and accuracy in cal- 
culating the transient is not emphasized. As a consequence, when accuracy is 
discussed it refers primarily to the steady state. 

In order to evaluate the various types of difference methods it was necessary to 
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select test cases with known solutions which were in some manner representative 
of flow problems. For the inviscid flow tests, the one-dimensional propagation of 
a shock wave, a rarefraction wave and a contact surface were selected for cal- 
culation by first-, second- and third-order finite difference methods. The results 
obtained from differencing the inviscid equations by the various methods were 
compared with the exact inviscid solutions. The results of these comparisons are 
discussed in the section on inviscid flows. 

For the viscous flow tests, the nonlinear Burgers equation was employed as the 
model to be integrated. Various schemes which resulted from extending the inviscid 
methods to viscous calculations were tested. The methods ranged from first to third 
order depending on the magnitude of the Reynolds number. The numerical results 
were compared with the exact solution for a shock wave type flow. These are dis- 
cussed in the section on viscous flows. 

It is important to note that tests on both types of flows were conducted only in 
one space dimension and, therefore, sweeping conclusions for multidimensional 
problems cannot in general be made. If, however, a multidimensional problem can 
be reduced to unsteady one-dimensional operators by splitting [l-3] then the one- 
dimensional tests provide direct insight into the selection of a differencing method. 

2. INVISCID METHODS 

The critical test of any finite difference method for calculating inviscid flows is its 
performance in the vicinity of a steep flow gradient. If a method is stable and 
accurate when encountering shock waves, strong rarefactions and contact surfaces, 
it then can be expected to compute complex flows without numerical difficulties. 
Most methods unfortunately exhibit large errors in the vicinity of steep gradients 
or become completely unstable. In an effort to provide a basis for choosing one 
method over another for a particular problem, Emery [4] evaluated the methods of 
Lax [5], Rusanov [6] (1st order), Lanshoff [7], Lax-Wendroff [8] and Richtmyer [9]. 
From this study Emery chose the first-order scheme of Rusanov to be preferable 
to that of Lax or Lax-Wendroff. Unfortunately, Emery did not test the methods 
of Godunov [lo], MacCormack [l I] or Rusanov [12] (3rd order). In an attempt 
to evaluate these techniques and provide comparisons with Emery’s investigation, 
a study of five different finite difference methods was undertaken. The methods 
were those of Gudunov, Richtmyer, MacCormack and two by Rusanov. The 
numerical schemes all have the capability of smearing inviscid flow discontinuities 
into smooth profiles at least several mesh points wide. This smoothing property 
permits them to automatically compute flows with internal shock waves and contact 
discontinuities. The resulting smoothed jumps move with the correct speed and 
satisfy the actual inviscid jump conditions. All schemes are explicit, but differ in 
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order of accuracy, two being of first-order, two of second-order, and one of third- 
order accuracy. 

In the study a series of numerical experiments was conducted to illustrate the 
magnitude and structure of the truncation viscosity produced by each scheme under 
several flow situations. The truncation viscosity is defined as the total numerical 
error composed of both the implicit truncation error associated with the differencing 
technique and any explicit artificial viscosity which might be added to the finite 
difference equations for stability. It is this total error term which governs the 
smearing of flow discontinuities into smooth variations. The implicit portion 
exists in all difference schemes, while the explicit portion may or may not be 
necessary. For example, explicit artificial terms appear in the two Rusanov methods, 
which are unstable without their use, but explicit terms do not appear in the 
Richtmyer method, which is stable without them. The other two methods studied 
are also stable without explicit artificial viscosity. 

For comparison purposes each scheme was used to compute a rarefaction wave, 
a contact discontinuity and a shock wave. Each of these flows represents a different 
balance of the conservation laws with the truncation viscosity induced by the 
finite difference approximation. In a rarefaction wave, nonlinearity produces a 
spreading of the wave and all gradients decrease in magnitude with time. The 
truncation error also decreases and eventually becomes negligible. The magnitude 
of the truncation error can be verified by comparison with the analytical wave 
expressions. By contrast, a uniformly translating contact discontinuity is in 
dynamic equilibrium, and there is no nonlinear convection present to steepen or 
broaden disturbances. The contact discontinuity is modified and dominated 
entirely by the truncation viscosity. Finally, in the shock wave, the nonlinear 
effects tend to steepen the profile and the gradients increase in magnitude until 
the truncation viscosity is no longer negligible. Eventually a balance is established 
between the steepening caused by convection terms and the diffusion caused by 
truncation viscosity. 

2.1. Inviscid Numerical Procedures 

The numerical schemes which were tested approximate an equation of the form 

wt +hz = 0, (1) 

where f is a function of W. Each scheme provides a “receipt” for calculating the 
value fz and wt from an initial distribution of w. The derivation of these procedures 
for computing derivatives in each case requires detailed analysis and as a result no 
attempt is made to reproduce these details in this paper. For the purposes of this 
discussion we will state each scheme in the form in which it was employed and 
compare the results of the various schemes. 
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The tests of the five different numerical schemes listed in Table I were conducted 
for the one dimensional unsteady flow of an ideal gas. For this type of flow Eq. (1) 
can be written in a vector form in which w andfare the vector functions. 

w = [i) f= (P$+J;J. 

The mass flux m and the fluid energy E are defined in terms of density, fluid velocity 
and pressure by the relations 

m = pu 

E = p/(y - 1) + ~2272. 

This form of Eq. (1) was integrated by each method for a standard set of initial 
conditions and the results obtained will be discussed next. 

2.2. Numerical Results 

The numerical calculations for the three wave propagation tests were conducted 
for the conditions shown in Table II. The state designated with the subscript 1 is 
located at the right-hand side of the initial discontinuity; subscript 2 designated 
the state on the left-hand side. 

TABLE II 
Initial Conditions for Test Cases 

Motion Pl PZ Ul u2 Pl P2 

Rarefaction wave 1.0 0.59049 0 -0.5 0.71428 0.34164 
Shock wave 0.59049 1.0 0 0.60622 0.47009 1.0 
Contact discontinuity 1.0 0.59049 0.5 0.5 1.0 1.0 

The strength of all the initial discontinuities was the same based on the two 
densities. 

Rarefaction Wave 

In a rarefaction wave, the wave speed at the head of the disturbance is greater 
than at the tail and, consequently, the disturbance continually widens as it pro- 
pagates. This extension of the wave leads to a continual decrease in strength of the 
gradients and in turn to smaller and smaller truncation errors. Truncation viscosity 
serves no useful purpose in this motion, and as a result the schemes rank according 
to their formal order of accuracy. 
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After a sufficiently long time, the motion becomes self similar and the appropriate 
similarity variable for comparing results is known to be x/t. This coordinate was 
used to correlate numerical results taken at three different times. The results are 
shown in Fig. 1. The schemes are also compared on the basis of the integrated 
magnitude of the error signal, D, where D is defined by 

.8 - 

.7 - 

FIG. 1. Density variation through a rarefaction wave. 
Curve (a) Godunov’s method, D = .95 
Curve (b) Rusanov’s method, first order, D = .95, u = 1.0 
Curve (c) Richtmyer’s method, IJ = .95 
Curve (d) Rusanov’s method, third order, (r = .7, w = 2.0 
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where 
U, is the numerical value, 
u, is the exact value and 
h is the distance across the wave. 

These values are shown in Table III. The MLW scheme was unstable under the 
specified conditions, and the RLW appears much closer to the true solution than 
indicated by its error. The major contribution to its error signal comes from the 
oscillations at the tail of the disturbance. From the results it appears that for rare- 
faction waves the higher the order of accuracy the better the method. 

TABLE III 
Error Magnitudes for Inviscid Methods 

Scheme 

RLW 
G 
Rl 
R3 

Deviation 
(Shock) 

23.37 x 10-a 
15.45 x 10-a 
16.70 x 1O-2 
21.31 x 1O-2 

Deviation 
(Expansion) 

2.08 x 1O-2 
1.72 x 1O-2 
4.21 x 1O-2 
1.32 x 10-e 

Relative 
deviation 
(Shock) 

1.51 
1.00 
1.08 
1.37 

Relative 
deviation 

(Expansion) 

1.57 
1.30 
3.18 
1.00 

x - ut 

(luhB1JZ 

FIG. 2. Density variation through a contact discontinuity moving with velocity 0.5. 
Curve (a) Godunov’s method, D = .95 
Curve (b) Rusanov’s method, of first order, D = .95, w = 1.0 
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x - “t 

(Zuh’t) 1’3 

FIG. 3. Density variation through a contact discontinuity moving with velocity 0.5, computed 
by both Richtmyer’s and McCormack’s methods, 0 = .95. 

x - “t 

(2uh3t)1’4 

FIG. 4. Density variation through a contact discontinuity moving with velocity 0.5, computed 
by Rusanov’s third-order method, G = .70, w = 2.0. 

Contact Discontinuity 

A contact discontinuity is an interface between fluids of differing states, across 
which both the pressure and velocity are continuous. For an exact 1 - D solution 
the interface should be convected with an unchanging density profile at the local 
fluid velocity. In the numerical calculation it is smeared, however, since the density 
gradient is large during the early stages of motion and artificial viscosity acts to 
smooth the solution. This is demonstrated in the results shown in Figs. 2-4. The 
computational results which appear were correlated as a function of a single 
similarity variable, ,$ = (X - ut)/W’+l, where N is the order of accuracy of the 
scheme. It should be noted that the actual width of the smearing at large times is 
governed by the accuracy of the method. The higher the order, the narrower the 
contact discontinuity will be. For short times, it can be seen that all methods are 
nearly equivalent. 
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FIG. 5. Density variation through a shock wave. 

Curve (a) Godunov’s method, LT = .95 
Curve (b) Rusanov’s method, tirst order, 0 = .95, w = 1.0 
Curve (c) Richtmyer’s method, D = .95 
Curve (d) McCormack’s method, D = 38 
Curve (e) Rusanov’s method, third order, (r = .7, w = 2.0 
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Shock Wave 

It is well known that shock waves are thin regions across which rapid changes in 
fluid state can occur. Within these regions a balance occurs between the diffusive 
effects of viscosity and the nonlinear steepening of wavelets. A similar phenomenon 
occurs in the shock smearing process employed by finite difference equations. 
Inside of the smeared shock a balance is established between the nonlinear effects 
and the truncation viscosity. The nature of the truncation viscosity was seen 
clearly in the previous calculation with contact surfaces. 

The density profile through the shock wave calculated by each method is plotted 
against the running coordinate x - VJ in Fig. 5. The shock speed V, was deter- 
mined from the equation 

Several different times are shown superimposed on the figures. 
Note that all methods provide nearly the same shock width, and higher-order 

methods display little or no advantage. The methods were compared on the basis 
of their integrated error magnitude signals. The ratios of the errors are shown in 
Table III and are noticeably different from those found for the rarefaction wave. 

2.3. Summary of Inviscid Results 

The tests of the five differencing methods indicate that the Godunov and third- 
order Rusanov schemes demonstrate the greatest accuracy and seem to have the 
least amount of oscillations. The third-order Rusanov does not, however, pro- 
pagate shocks without oscillations, while the Godunov scheme does. From the 
standpoint of computing time the Godunov scheme is significantly less than the 
third-order Rusanov method. 

3. VISCOUS METHODS 

Thus far the discussion has centered about solution of the inviscid or large 
Reynolds number flow problems. In most flows, however, are regions in which the 
local Reynolds number becomes small. For these flow regions real viscosity effects 
are important and, consequently, direct extension of inviscid differencing proce- 
dures to viscous flows can introduce error due to the artificial viscosity. It therefore 
is necessary to develop and optimize numerical schemes that remain stable over a 
wide range of local Reynolds numbers with a minimum effect of artificial viscosity. 
Such an optimization necessitates a study of the interaction between the artificial 
viscosity associated with a numerical scheme and the real viscosity of the system. 
The influence of time step on the stability and accuracy of the scheme is also 
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important, since in the time-dependent approach to steady-state problems it may 
be necessary to maximize the time step in order to accelerate convergence. More 
accuracy can generally be obtained by using second and third-order schemes; but 
for multidimensional problems, the equations associated with these schemes are 
unwieldly. However, with the introduction of the method of splitting, it is possible 
to “split” a multidimensional problem into a set of one-dimensional problems and 
take advantage of the greater accuracy of higher order schemes. 

In this study, Burgers equation for a plane traveling wave of small amplitude is 
chosen as the model for the one-dimensional time-dependent Navier-Stokes 
equation. An attempt was made to extend the inviscid methods discussed earlier to 
approximate the inertia terms of this separation. Unfortunately, only the schemes 
of Rusanov were readily adaptable, since the artificial viscosity was explicit and 
could be controlled. As a result, the convective portion of this model was approxi- 
mated by the inviscid Rusanov’s first- and third-order finite difference schemes; 
while the diffusive portion was differenced explicitly, implicitly or by a DuFort- 
Frankel scheme [13]. Linear stability analysis was used to determine the approxi- 
mate range of stability of the combined schemes for various values of local 
Reynolds number, time step, and the artificial viscosity parameter. As a measure 
of the accuracy and nature of convergence of the schemes, a comparative study was 
made of the root-mean-square deviation of numerical results from the exact 
solution of Burgers equation [ 14-161. 

3.1. Burgers Equation 

Burgers equation approximates, to the first order, the motion of a plane wave of 
small but finite amplitude. It takes into account both convection and diffusion and 
is given by 

(au/at) + u(au/ax) = s(a%/ax2), (4) 

where 6 is the diffusivity of sound, u is the excess wavelet velocity, x = X - cO t is 
a coordinate whose origin moves in the direction of the wave with the undisturbed 
sound speed cO . For the initial wave form 

u(x, 0) = 
Ul 3 x<o 

0, x20 
(5) 

the exact solution of Eq. (4) is given by Lighthill [16] as 

u(x, t) = Ul 
(6) 

1 + exp -$ [ ( x - k ult)] 
erfc(-x/2 d/St> * 

erfc[(x - u,t)/2 d/st] 

This solution was used as the test case for the numerical approaches. 
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3.2. Viscous Dlflerence Approximations 

The difference approximations to Burgers equation which were tested are best 
explained by considering the equation in the form 

where F = G/2. 

(au/at) + (aF/ax) = 6(a%/ax2), (7) 

The left side of this equation can be viewed as the inviscid form of the equation 
and, as a result, can be differenced by any of the inviscid methods discussed earlier. 
Unfortunately, this approach can introduce an artificial viscosity for stabilization 
which is not required when the viscous term is important. It is therefore necessary 
to employ inviscid schemes in which artificial viscosity can be controlled. In this 
study, only the two schemes of Rusanov as described in Table I were used to 
difference the left-hand side of Burgers equation. 

The viscous term of Burgers equation was tested for three different types of 
differencing. The first was the standard explicit difference where 

The second form was totally implicit so that the time t, in Eq. (8) is replaced by the 

TABLE IV 

Viscous Flow Difference Approximations 

Inertia terms Viscous terms Stability condition 

lst-order Rusanov = 
Explicit - (u:,, - 2u,” + z&) l7”<25+wo< 1 
Implicit - (u?+: - 2~2’ + &?J cJ2 < 26 + WI7 < 1 + 45 

f = q/Re 
3D-order Rusanov 

Explicit - 0 
Step I = Implicit - 0 (See figures in text) 

DuFort-Frankel - 0 

Step II = 
[ 

Explicit - 0 
Implicit - 0 
DuFort-Frankel - @q/3 Re)(z&,, - ~2’ - u,* + u:!~,~) 

Explicit - (q/Re)(c+l - 2&* + ui.J 
Step III = Implicit - (q/Re)(uz:i - 2$’ 

DuFort-Frankel - (q/Re)[u,+, - (4/3)uz’ - (2/3)um” + z&l 
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final time t, . The third scheme was the DuFort-Frankel approach which has the 
form 

a2u/ax2 = [u;+~ - (4/3) u; - (2/3) u: + u;JAx2. (9) 

In this expression t, is the final time, tl is the initial time and i is a time between 
t1 and t2 . As a result of this form a predictor difference equation is required to 
obtain the values of u at the time I. The predictor equation which is usually of 
lower-order accuracy than the final equation, can be formed in two ways. If one is 
interested only in steady-state results, the first is to neglect the viscous term and 
employ only the explicit inertia difference equation as the predictor. For a more 

5.0 
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w 

-5.0 

-10.0 I I 1 , t 
0.5 1.0 

0 

FIG. 6. Stability regions for 3rd-order Rusanov (explicit). 
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exact predictor one can use a total explicit difference form of Burgers equation. 
Both of these approaches were tested with the third-order Rusanov differencing. 
For the Is&order Rusanov inertia scheme these tests become redundant due to the 
order of the scheme and therefore the DuFort-Frankel method was not tested. 

The complete difference approximations as they were used in the computations 

~100 

t 

FIG. 7. Stability regions for 3rd-order Rusanov (implicit). 
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are listed in Table IV along with the linear stability criteria. The schemes developed 
using the first-order Rusanov method yielded stability conditions that could be 
solved analytically, but the stability regions for the third-order case had to be 
obtained by a computer study. Stability results from the study are shown in 
Figs. 6-9. The results are displayed as enclosed or bracketed regions within which 
stable solutions are obtained. Note that for the explicit scheme the region of 
stability in the (w, a) plane decreases as (ST/@) increases. For the implicit and 
DuFort-Frankel schemes the stability region increases in area as (87/h2) increases. 

The test calculations for comparison with the exact solution to Burgers equation 
were conducted subject to the stability criteria presented for each scheme. The 
results of these tests will now be discussed. 

3.3. Calculation Results 

The numerical methods which have been presented were utilized to compute the 
solution to Burgers equation for the initial conditions 

u(x, 0) - ; for x < 0 
for x > 0. 

loo- 

Al= 1.5 
h2 

I 
6T 
7: ‘.O - 1 

50 

I 

dr= o,5 
h2 

I 

w 
ar 
-= 0.1 
h2 

-3.0 ’ ’ 1 I I I I , 1 , I _ 
0.5 1.0 

u 

FIG. 8. Stability regions for 3rd-order Rusanov @Fort-Frankel/DuFort-Frankel). 
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-10.0 I(I 
05 10 

u 

FIG. 9. Stability regions for 3rd-order Rusanov (DuFort-Frankel). 

The schemes with implicit differencing of the diffusion term were solved by the 
Double-Sweep method [17], while all other schemes are solved by the usual 
method of direct substitution from the previous time level. 

A grid size, h = 0.01 was chosen; and T/h varied within the range 0 < (T/h) < 1. 
For w = 1, T/h = 0.2, and 0.1 < (h/S) < 106, all the schemes were integrated 

through 200 cycles. Within this time the initial wave form evolved into a steady 
state profile moving in the positive n-direction with a mean shock speed, V, = 0.5. 

The computed velocity profiles are compared with the exact solutions in Fig. (10) 
for various values of (h/6). These results were evaluated by computing the root- 
mean-square deviation between the numerical scheme prediction and the exact 
solution. 
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The root-mean derivation, Q, is defined by the relation 

where 
d, = u, - u,*, 

N = total number of computed points, 
u rn= computed values, 

&?I * = exact values. 

0 TOx FIRST ORDERIMP: EXACTAND THIRD ORDER - 

w = 1.0.; = 0.2. p = 0.1 
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The variation of Q with (h/S) for each scheme is plotted in Fig. 11. From the 
results it is clear that the most accurate method is the implicit viscous third-order 
Rusanov scheme. Upon determining this fact the combined scheme was studied to 
determine the effect of the artificial viscosity on the accuracy. These results are 
shown in Fig. 12. From these results it is clear that the artificial viscosity can 
significantly affect the accuracy for a Reynolds number between 0.5 and 10. It 
appears, however, that w = 1 is a good value to employ to satisfy both the overall 
accuracy and stability conditions. 

A IMPLICIT VISCOUS 

THIRD dRDER 
INERTIA 

B EXPLICIT VISCOUS 

C DUFORT-FRANKELjDUFORT FRANKEL 

viscous 

D DUFORT-FRANKEL VISCOUS 

FIRST ORDER 
INERTIA 

E IMPLICIT VISCOUS 

FIG. 11. Root-mean-square error between exact and numerical solutions as a function of h/6. 

4. CONCLUSIONS 

The study of the viscous and inviscid methods has provided some interesting 
information on both types of methods. For inviscid flows it appears that the first- 
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LOG (hi61 

10-l 1 
10-4 10-3 1o-2 1 o-1 

LOG C’ 

FIG. 12. Root-mean-square error for the implicit viscous 3rd-order Rusanov scheme. 

and third-order methods offer the best overall accuracy. For first-order calculations 
the method of Godunov appears to have the least error when compared to the 
first-order Rusanov scheme. The third-order method of Rusanov appears, however, 
to yield the most accurate inviscid calculations. It unfortunately has the disadvan- 
tage of requiring almost twice the amount of computer time as the first-order 
schemes. 

For viscous flows it appears that implicit differencing of the viscous terms is 
preferable to explicit or DuFort-Frankel differencing. For the inertial terms any 
scheme which is stable for inviscid flows, and has controllable artificial viscosity 
at low Reynolds numbers may be used. The third-order scheme of Rusanov appears 
preferable at this time since the artificial viscosity is of the order of the step size to 
the fourth power and hence the artificial viscosity can be maintained small for 
reasonable step size. For lower order schemes it becomes necessary to reduce the 
artificial viscosity with the Reynolds in order to make the schemes acceptable for 
Reynolds numbers less than one. 
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